top of page

List of Publication

From 2001 to present

 

1. Allosteric regulation of microtubules

Ayukawa R, Iwata S, Imai S, Kamimura S, Hayashi M, Ngo Kien Xuan, Minoura S, Uchimura S, Makino T, Shirouzu M, Shigematsu H, Sekimoto K, Gigant B, and Muto E.  GTP-dependent formation of straight tubulin oligomers leads to microtubule nucleation.

             J. Cell Biol. 220: doi. 10.1083/jcb.202007033 (2021).

Muto E, Sakai H, Kaseda K. Long-range cooperative binding of kinesin to a microtubule in the presence of ATP.

             J Cell Biol. 168:691-6 (2005).

             Some evidence for a long-range state transition of microtubules during motility of kinesin is presented. Despite the conventional view of                            microtubules as being static tracks for motors, the study indicates conformational flexibility of microtubules could be an essential                                      component in kinesin motility mechanism.  The paper was recommended in Faculty Opinion (https://facultyopinions.com/prime/home/).

2. Interface of microtubule for motor proteins

Uchimura S, Fujii T, Takazaki H, Ayukawa R, Nishikawa Y, Minoura I, Hachikubo Y, Kurisu G, Sutoh K, Kon T, Namba K, Muto E. A flipped ion pair  at the dynein-microtubule interface is critical for dynein motility and ATPase activation.

              J Cell Biol. 208:211-22 (2015).

              In this and the following two papers, the residues on the microtubule critical for motility of motor proteins, kinesin and dynein, have been                         characterized using mutational analysis of tubulin.  The short loop/helix of alpha-tubulin composed of four peptides appeared critical for                         ATPase activation in both kinesin and dynein.

Uchimura S, Oguchi Y, Hachikubo Y, Ishiwata S, Muto E. Key residues on microtubule responsible for activation of kinesin                   ATPase.

             EMBO J. 29:1167-75 (2010).

Uchimura S, Oguchi Y, Katsuki M, Usui T, Osada H, Nikawa J, Ishiwata S, Muto E.  Identification of a strong binding site for                 kinesin on the microtubule using mutant analysis of tubulin.

             EMBO J. 25:5932-41 (2006).


 

3. Physics of microtubules

Minoura I, Katayama E, Sekimoto K, Muto E. One-dimensional Brownian motion of charged nanoparticles along                                  microtubules: a model system for weak binding interactions.

              Biophys J. 98:1589-97 (2010).

              Extending the previous paper (Minoura and Muto, 2006), this study established a theoretical framework for the mechanism of weak                                   electrostatic interactions of microtubules with various proteins.

Minoura I, Muto E. Dielectric measurement of individual microtubules using the electroorientation method.

              Biophys J. 90:3739-48 (2006).

                  We developed an experiment system to quantitatively evaluate the polyelectrolyte nature of microtubules. The study paves a way for future                        exploration of the physicochemical mechanism underlying the weak electrostatic interactions of microtubules with various proteins. 

3. Recombinant tubulin and other technique

Minoura I, Takazaki H, Ayukawa R, Saruta C, Hachikubo Y, Uchimura S, Hida T, Kamiguchi H, Shimogori T, Muto E. Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin-microtubule interface.

              Nat. Commun. 7:10058 (2016).

               Using the recombinant human tubulin TUBB3 , the study dissects the molecular mechanism underlying the neuronal disease named CFEOM.                   The paper was recommended in Faculty Opinion.

Hotta T, Fujita S, Uchimura S, Noguchi M, Demura T, Muto E, Hashimoto T. Affinity purification and characterization of functional tubulin from cell suspension cultures of Arabidopsis and tobacco. Plant Physiol. 170(3): 1189-1205 (2016).

             The technology of recombinant tubulin was arranged for the expression and purification of plant tubulin.  The paper was recommended in                         Faculty Opinion.

Minoura I, Hachikubo Y, Yamakita Y, Takazaki H, Ayukawa R, Uchimura S, Muto E. Overexpression, purification, and functional analysis of recombinant human tubulin dimer.

              FEBS Lett. 587:3450-5 (2013). 

                   We established a baculovirus-insect cell expression system for the purification of recombinant human tubulin, which has been a major                               challenge for decades. The paper was recommended in Faculty Opinion.

Katsuki M, Muto E, Cross RA. Preparation of dual-color polarity-marked fluorescent microtubule seeds.

              Methods Mol Biol. 777:117-26 (2011).

Until 2001

Nishiyama M, Muto E, Inoue Y, Yanagida T, Higuchi H. Substeps within the 8-nm step of the ATPase cycle of single kinesin             molecules.

       Nat Cell Biol. 3:425-8 (2001).

 

Inoue Y, Iwane AH, Miyai T, Muto E, Yanagida T. Motility of single one-headed kinesin molecules along microtubules.

       Biophys J. 81:2838-50 (2001).

 

Miyamoto Y, Muto E, Mashimo T, Iwane AH, Yoshiya I, Yanagida T. Direct inhibition of microtubule-based kinesin motility by           local anesthetics.

       Biophys J. 78:940-9 (2000).

Higuchi H, Muto E, Inoue Y, Yanagida T. Kinetics of force generation by single kinesin molecules activated by laser photolysis         of caged ATP.

       Proc Natl Acad Sci USA. 94:4395-400 (1997).

 

Kojima H, Muto E, Higuchi H, Yanagida T. Mechanics of single kinesin molecules measured by optical nanometry.

       Biophys J. 73:2012-22 (1997).

 

Muto E, Edamatsu M, Hirono M, Kamiya R. Immunological detection of actin in the 14S ciliary dynein of Tetrahymena.

       FEBS Lett. 343:173-6 (1994).

Kamiya R, Kurimoto E, Muto E. Two types of Chlamydomonas flagellar mutants missing different components of inner-arm           dynein.

       J Cell Biol. 112:441-7 (1991).

Muto E, Kamiya R, Tsukita S. Double-rowed organization of inner dynein arms in Chlamydomonas flagella revealed by tilt-             series thin-section electron microscopy.

       J Cell Sci. 99:57-66 (1991).

Kamiya R, Hasegawa E. Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii.

       Exp Cell Res. 173:299-304 (1987).

 

Hasegawa E, Hayashi H, Asakura S, Kamiya R. Stimulation of in vitro motility of Chlamydomonas axonemes by inhibition of           cAMP-dependent phosphorylation.

       Cell Motil Cytoskel. 8:302-11 (1987).

Newman SA, Frenz DA, Hasegawa E, Akiyama SK. Matrix-driven translocation: Dependence on interaction of amino-terminal         domain of fibronectin with heparin-like surface components of cells or particles.

       Proc Natl Acad Sci USA. 84:4791-5 (1987).

McDonald JA, Quade BJ, Broekelmann TJ, LaChance R, Forsmant K, Hasegawa E, Akiyama S. Fibronectin’s cell-adhesive               domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix.

       J Biol Chem. 262:2957-67 (1987).

Akiyama SK, Hasegawa E, Hasegawa T, Yamada KM. The interaction of fibronectin fragments with fibroblastic cells.

       J Biol Chem. 260:13256-60 (1985).

Hasegawa T, Hasegawa E, Chen WT, Yamada KM. Characterization of a membrane-associated glycoprotein complex                     implicated in cell adhesion to firbonectin.

       J Cell Biochem. 28:307-18 (1985).

Chen WT, Hasegawa E, Hasegawa T, Weinstock C, Yamada KM. Development of cell surface linkage complexes in cultured             fibroblasts.

       J Cell Biol. 100:1103-14 (1985).

 

Hasegawa E, Kamiya R, Asakura S. Thermal transition in helical forms of Salmonella flagella.

J Mol Biol. 160:609-21 (1982).

© 2023 サイト名 Wix.comを使って作成されました

bottom of page